Beyond: Mycelium

Ali and Annelie- Final Project:

Beyond: Mycelium
What we’ve explored:

We  have created a DIY magnetic stirrer to oxygenate our cultures

using a laser cut plexiglass box, a computer fan some magnetics and a bit of tinkering, we’ve designed an efficient, cheap stirrer to provide oxygen to our growing cultures.

We’ve explored and designed different growth substrates using different sources of sugars  and nutrients

Explored the interaction between fungi and electricity (see gallery) based on research on the relationship in nature between fungi and lightning, this research has driven us to continue exploring this. We created different set ups to create a current through the agar medium in petri dishes we inoculated with mycelia.

The preliminary results of this research indicate that a plate modified with electric current from a 9V battery has increased the growth rate compared to non electrified cultures and a culture with similar set up that has not had the electric current for as long a time. We’ve also created a plate modified with magnetic filings and used a magnet to affect the culture.
_HI_9059-1 copy

We will continue to go forward with this research and will possibly look to an electrical engineer to hep analyze and create an ideal set up for this experiment. We may look for the scar caused by lightning to develop similarly in the mycelia to the scars that form in nature and on skin, but need to further research this phenomenon.

We’ve explored briefly the use of molecular gastronomy to create knew methods of growth. We used alginate and calcium lactate to attempt spherification of the media which will be inoculated with mycelium.

We will continue to grow our liquid cultures and hope to in the future grow more material to begin to understand how we will use it.

Research document:

myceliumresearchdocument

 

What is Mycelium?

“Mycelium is the vegetative part of fungi, which consists of a network of interconnected filamentous cells called hyphae. The mycelium of mushroom- forming basidiomycetes is highly attractive and embodies a great potential, because of its tendency of growing on a wide variety of substrates, therefore resulting into a range of diverse materials and applications, related to the architecture and the design fields. Moreover, this organic network of filamentous cells is characterised by peculiar properties, such as strength, elasticity, thickness, homogeneity and water repellency.”

What is currently be done with mycelium?

Currently mycelium is being used in the art and design world for various applications. The strong fibers of mycelium works wells as a natural alternative to wood, cork and plastics and can also be easily shaped into both structural materials such as insulation and decorative artifacts such as lampshades and homeware. It is also produced in a more energy efficient way than conventional manufacturing.

What we would like to explore?

The use of mycelium as an alternative building material is revolutionary and is proving that there are natural alternatives to our current ways of manufacturing, but within the discipline of mycoculture itself there has not been much experimentation and it seems that the majority are using the fibres in a composite of materials and the actual chemistry beyond the physiology is not being explored.

We would like to see how we can go beyond the current methods of growing and using mycelium cultures and with this explore new material solutions. We hope to achieve this through a series of experiments addressing these two parts of mycoculture:

  1. Growing Mycelium
  2. Fabricating with Mycelium

Growing Mycelium

Current research with mycelium involves the growth of material in organic decaying substrates. We propose an alternative approach, we will be growing pure mycelium in a liquid culture using experimentally designed methods, based on research in the industrial production of mycelium for medicinal use.

After our tour to the Industry City Distillery we have been doing a lot of research into growth optimisation and found that the same alginate that is used to keep the yeast growing at optimal temperature and Ph level can be used as a substrate for the growth of mycelium in liquid culture. We will definitely be exploring this avenue when we get to the growing of larger masses of mycelium.

We will also be prototyping a DIY bioreactor to further optimize the growth of the material.

Fabricating with Mycelium

Fungi and electricity:

Lightning induces fruiting of mushrooms in nature

We would like to scale down this interaction between fungi and electricity by creating a modified petri dish experiment that will test the effect of electrical current on the growth of fungal cultures.

There is also currently some interest within the science world in the perceived conductivity of mycelium. As per our previous project we would like to continue this research with more scientific backing.

Fungi as fabric:

We are hoping to move away from the composite use of mycelium to explore the chemical makeup of the hyphae and see if there is a way in which we can use this fibre for fabric or as alternative to cotton or yarn.

 

The cultures:

Reishi

myclium-04 IMG_8930 IMG_8933

 

 

Ghost fungi

myclium-03 myclium-06

IMG_8935

 

 

Chicken of the Woods

IMG_8349 IMG_0751

IMG_8938

 

 

Shiitake

IMG_8927

 

Mycelium + Electricity

 

Modifying the Jar:
Creating the ideal vessel for liquid cultures

 

Oxygenating cultures: the magnetic stirrer

IMG_8338 copy

 

[We will be creating a diy magnetic stirrer to facilitate the growth of mycelium liquid cultures within an incubator box to achieve the ideal temperature for the organisms. This drawing is a box that has a computer fan inside with magnets attached, then a magnetic bar is placed within the liquid culture and when placed on the box, the stirring is produced from the rotations of the fan. This design allows the stirrer to be portable, and we can create a setup with multiple fans set up to allow us to stir many cultures at one time in a controlled setting.

Making the special containers for growth of mycelium. The jars are modified with two holes in the lid, one is stuffed with poly fill filling and the other is filled with RTV (autoclavable) silicone. The silicone is a seth healing injection port for the insertion of syringe needles, and the polyfill acts as a filter allowing oxygen into the jar.

And lastly, we have begun to create a modified petri dish setup with which we will test fungi’s response to electricity. We are interested in this after reading about fungi’s relationship with lightning and we are looking to simulate this interaction in the lab.]

IMG_8789 IMG_8792IMG_8897 IMG_8896 dried samples